Problem 1: True/False. Correct = 2, incorrect = -2, no answer = 0.

(T) F Each context-free language is decidable
Given a context-free grammar and a word w, there is an algorithm to decide whether the grammar generates w.

T (F) There is an undecidable language L whose complement \(\bar{L} \) is context-free
If \(L \) is context-free, then \(\bar{L} \) is decidable, so \(\bar{L} = L \) must also be decidable.

(T) F If \(L \) and \(\bar{L} \) are Turing-recognizable then \(L \) is decidable
Given an input \(w \), simulate the TM for \(L \) and the TM for \(\bar{L} \) on \(w \) until one of them accepts. If the TM for \(L \) accepts, accept. If the TM for \(\bar{L} \) accepts, reject.

T (F) If \(L \) is Turing recognizable then so is \(\bar{L} \)
From the previous question, we know that if \(L \) and \(\bar{L} \) are Turing-recognizable, then \(L \) is decidable. So if this were true, every Turing-recognizable language would be decidable. But we know this is not the case (e.g. \(A_{TM} \) is recognizable but not decidable.)

(T) F If \(L \) is decidable then \(\bar{L} \) is decidable
To decide \(\bar{L} \) do the following. On input \(w \), simulate the decider for \(L \) on input \(w \). If that decider accepts, reject. If that decider rejects, accept. (We know it will always halt.)

(T) F If \(L \) and \(L' \) are Turing-recognizable then so is \(L \cap L' \)
To recognize \(L \cap L' \), do the following. On input \(w \), run the TM \(M_L \) for \(L \) on \(w \). If it accepts, run the TM \(M_{L'} \) for \(L' \) on \(w \). If it also accepts, then accept.
Problem 2: Prove or disprove: the following language is decidable:

\[L = \{ \langle M, w \rangle : \text{TM } M, \text{ on input } w, \text{ makes an odd number of transitions.} \} \]

\(L \) is not decidable. To prove this, we will show that if \(L \) is decidable, then \(\text{HALT}_{TM} \) is decidable. Since we know \(\text{HALT}_{TM} \) is not decidable, we conclude that \(L \) is not either.

Assume that \(L \) is decidable, and let \(M_L \) be a TM that decides it. Construct the following TM \(M_H \) to decide \(\text{HALT}_{TM} \):

\(M_H \) on input \(\langle M, w \rangle \):

1. Construct a TM \(M' \) by modifying \(M \) so that \(M' \) makes an extra transition at the start. (Do this by adding a new start state \(s' \), and make each transition from \(s' \) go to the old start state without changing the tape.)
 Note that \(M \) halts on \(w \) iff \(\langle M', w \rangle \in L \) or \(\langle M, w \rangle \in L \).

2. Use \(M_L \) to decide whether each of \(\langle M \rangle \) and \(\langle M' \rangle \) are in \(L \).

3. If either is, ACCEPT, else REJECT.

claim: (assuming \(M_L \) decides \(L \)) \(M_H \) decides \(\text{HALT}_{TM} \).

proof of claim:

Suppose \(M \) halts on \(w \). Then either \(M \) or \(M' \) make an odd number of transitions on input \(w \). So \(M_H \) accepts \(\langle M, w \rangle \). Thus, \(M_H \) accepts every instance of \(\text{HALT}_{TM} \).

On the other hand, suppose \(M \) does not halt on \(w \). Then neither does \(M' \). So (by the construction of \(M_H \)) \(M_H \) rejects \(\langle M, w \rangle \). Thus, \(M_H \) rejects every string not in \(\text{HALT}_{TM} \).

This proves the claim.

We have shown that, if \(M_L \) is decidable, so is \(\text{HALT}_{TM} \). Since \(\text{HALT}_{TM} \) is not decidable, \(M_L \) cannot be either.
Problem 3: Prove or disprove: the following language is decidable:

\[L = \{ \langle D \rangle : \text{DFA } D, \text{ on some input } w, \text{ visits each one of its states.} \} \]

\[L \text{ is decidable.} \]

Proof 1:
1. A DFA has an input that makes it visit all its states if and only if the DFA, considered as an directed graph, has a path \(p \) that starts at the start vertex (state) and visits all the nodes.
2. If there is such a path \(p \), and the DFA has \(n \) states, then there is such a path \(p' \) of length at most \(n^2 + n \). (To see this, consider tracing the path \(p \) from the start vertex. Every time you trace a cycle, if that cycle does not visit a vertex that hasn’t yet been visited, then delete the cycle from \(p \). When you are done, the path \(p \) minus the deleted cycles form a path \(p' \) that starts at the start vertex and visits all the vertices. Furthermore, \(p' \) has length at most \(n^2 + n \): every cycle in \(p' \) visits some vertex that wasn’t visited before, so there are at most \(n \) cycles, and each cycle has length at most \(n \).)
3. So here is an algorithm that decides \(L \):
 1. Consider each path \(p \) of length \(n^2 + n \) or less in the graph of the DFA.
 2. If any such path visits all states of the DFA, then accept, else reject.

Proof 2:
The following TM decides \(L \):
1. For each state \(s \) of \(D \), construct a DFA \(D_s \) by modifying \(D \) so that \(s \) is the only accept state, and every transition from \(s \) leads back to \(s \) again. That is, construct \(D_s \) so that \(L(D_s) \) contains those strings that cause the DFA to enter state \(s \) at some point.
2. Construct a DFA \(D' \) such that \(L(D') = \cap_s L(D_s) \), using the standard construction for taking the intersection of regular languages. (Here the intersection is taken over all states \(s \).) Then \(L(D') \) is the set of all strings that cause \(D \) to enter every state at least once.
3. Test whether \(L(D') = \emptyset \) using the algorithm from the book (look for any path from the start state to an accept state).
4. If \(L(D') = \emptyset \), then REJECT, else ACCEPT.
Problem 4: Let \(\{0, 1\}^\infty \) denote the set of countably infinite sequences of zeros and ones. For example, \(00000000\ldots, 11111111\ldots, \) and \(01010101\ldots \) are members of the set.

Prove or disprove: *The set \(S = \{0, 1\}^\infty \) is countably infinite.*

The set \(S \) is uncountable (that is, not countable).

Consider any 1-1 mapping \(f \) from the natural numbers to the set \(S \). (So \(f(i) \) is a string in \(S \) corresponding to \(i \).)

Consider the string \(x \) where the \(i \)th bit of \(x \) is \(1 - f(i)_i \) — where \(f(i)_i \) is the \(i \)th character of the string \(f(i) \). This string is in \(S \), yet it differs from each string \(f(i) \).

Thus, any such mapping \(f \) leaves out at least one string in \(S \). Thus, \(S \) cannot be countable.